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A simple lattice gas model, a microscopically reversible cellular automaton, is

described and shown to exhibit thermodynamic irreversibility in processes

similar to those in real gases. The model, which has no random elements,

develops a long-lasting equilibrium state within a Poincaré cycle. This state is an

attractor resulting from the nonlinear nature of the collective particle collisions

and motions. The results illustrate how the Second Law of Thermodynamics

applies to real systems governed by reversible microscopic dynamics.
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1. INTRODUCTION

In his book on the foundations of statistical mechanics, Lawrence Sklar (1)

writes concerning the apparent conflict between the reversible laws thought

to govern dynamics at the molecular level and the observed irreversibility

of real systems:

‘‘Although some aspects of the theory are well understood and univer-
sally accepted, such crucial areas as the correct approach to the introduction
into the theory of irreversibility and the approach to equilibrium and the
proper statistical mechanical definition of entropy are the subject of intense
and seemingly interminable controversy.’’



Richard Feynman devotes one of his chapters on thermodynamics to

an exploration of the paradox, (2) and in their Statistical Mechanics Landau

and Lifshitz state that there is ‘‘a contradiction, a very deep one’’ in the

foundations of statistical mechanics. (3) They reject the critical role assigned

to initial conditions in the standard theory, writing: ‘‘It is quite uncertain at

present whether one can deduce the law of increase of entropy formulated

in such a way on the basis of classical physics.’’

More recently, Roger Penrose writing about the statistical asymmetry

of the universe proposes a drastic resolution of this apparent contradiction

with symmetrical microscopic laws: (4) ‘‘In my own judgement, there

remains the one (‘obvious’) explanation that the precise physical laws are

actually not time-symmetric!’’

In several recent papers Joel L. Lebowitz presents a detailed study of

the issue. (5–7) He remarks in ref. 6 that ‘‘...it is quite surprising that there is

still so much confusion about the ‘problem of irreversibility’,’’ and ex-

presses the opinion that there are no grounds for the controversies—that

Boltzmann’s explanations of the matter are completely satisfactory. He

attributes the continuing controversy to a lack of appreciation of Boltz-

mann’s responses to his early critics and of his later writings.

Lebowitz’s view is supported in this paper by exact results from a

system of the kind that Boltzmann considered in this later work, (8, 9) i.e., a

microscopically reversible system within perfectly elastic walls. Such a

system satisfies the conditions that a valid entropy-decreasing motion can

result if the velocities of all particles in the system are reversed, and the

system is cyclic, conditions that Loschmidt and Zermelo pointed out were

not satisfied in Boltzmann’s early work. The model illustrates how what are

called irreversible processes, expansion into vacuum for example, arise in

such a system. Thus the results from the model are in general accord with

the Boltzmann predictions for real gas systems.

Although the model motions resemble those of real gases in several

respects, there are significant differences. For this reason the work is not to

be viewed as an attempt to approximate real gas behavior; instead it is a

study of a selfcontained model in which fundamental concepts underlying

the thermodynamics of gases can be examined more easily. Of course, the

hope is that the results will add to our understanding of real gas behavior.

Thus the model shares the purpose of the Ehrenfest wind-tree model. (10)

The remainder of the paper is organized as follows:

Section 2. Model description

Section 3. Model results

Section 4. Discussion and conclusion
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2. MODEL DESCRIPTION

(a) Basis of the Model

The model is a lattice gas version, a cellular automaton, of the discrete

velocity gas model introduced in Broadwell. (11, 12) The simplicity of that

model allows exact solution of the model Boltzmann equations for several

flows, including Couette and Rayleigh flow and shock waves. Shock wave

solutions are also presented in Caflisch (13) and Cornille. (14, 15) The remark-

able similarity of these model solutions to those of more realistic models

and the similarity of the model H-function behavior to that given by the

Boltzmann equation suggest that an examination of the thermodynamic

behavior of the related lattice gas might be instructive. The lattice version

of the model was formulated by Hardy and Pomeau (16) and some of its

thermodynamic properties discussed by them and by Hardy et al. (17)

Wolfram presents a comprehensive treatment of the kinetic and hydrody-

namic theory of general cellular automata. (18)

(b) The Model

The two-dimensional lattice gas model consists of indistinguishable

particles that move on a two-dimensional square lattice in the x–y plane

with four fixed velocities. (The restriction to four velocities is an element in

common with the Ehrenfest wind-tree model to which the discrete velocity

gas is distantly related.) Particles move and collide according to the follow-

ing rules. In each time step all particles move to the adjacent site and then

some collide. Collisions, which turn the collision partners through ninety

degrees, take place if and only if two particles with oppositely directed

velocities occupy the same site and the collision destination velocity loca-

tions are empty. Particles are excluded from having the same velocity at the

same site. Particles pass through each other between sites.

Each step is reversible, with the result that if at some time all particle

velocities are reversed, the initial state with all the velocities reversed is

recovered. Furthermore, since the number of configurations is finite and

each move and collision produces a new state, a return to the initial condi-

tion is guaranteed. Stated another way, the system cannot enter a closed

loop in phase space that does not include the initial condition.

3. MODEL RESULTS

Model results are presented in the following for three processes: (1)

equilibration at constant area from arbitrary initial particle configurations,
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(2) expansion into a vacuum, and (3) equilibration at constant area through

expansion and shock waves. In some of the following, particles moving N,

E, S, and W will be denoted by the numerals 1–4.

3.a. Constant Area Particle Re-Arrangement

The model is used first to address the motion of particles from pre-

scribed initial conditions in lattice areas of increasing size, first steps

towards the thermodynamic limit. Figure 1(a) is the particle number

history for the 5×5 lattice where for clarity only two of the population

histories are shown. The initial condition consists of East moving particles

at every site and a particle directed South at the (3, 3) site. In these figures

and in the subsequent discussions, the particle velocity, lattice spacing, and

time step are taken to be unity.

Fig. 1. Particle number history for two lattices.
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Fig. 2. Particle number history demonstrating the emergence of an equilibrium state.

The velocity fields for the 5×5 lattice show that the system returns to

the initial configuration in 81 steps as Fig. 1(a) suggests. This lattice with

ten particles has approximately 1011 possible microstates so the model is far

from ergodic. The return or recurrence time of the 5×6 lattice is approxi-

mately 104 and is too long to be conveniently computed for any larger

lattice.3

3 All the computer results reported here were obtained on a desktop computer.

Figures 1 and 2 show that as the lattice size increases (towards the

thermodynamic limit) a long lasting equilibrium state emerges in which the

populations in the four directions are equal. With further increase in size

the relative magnitude of the fluctuations continues to decline and the

length of the equilibrium state increases. The oscillations at early time in

Fig. 1(b) are the motions required to remove the mean horizontal momen-

tum in the initial condition. The results in Fig. 2(d), discussed later, are for

initial conditions with no mean momentum. (There are fewer particles in

this case than in the 15×15 lattice so the fluctuations are larger.)
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The Boltzmann H-function for the lattice gas is the discrete represen-

tation of

H=F
V
dyr F

.

−.
dynf(nF, r, t) ln f(nF, r, t)

where rF is the position vector, nF is the particle velocity vector, and dyr and
dyn the differential volumes in position and velocity space. The model

expression is

H(t)=C n(i) ln n(i) A

where A is the area, N the number of particles, and n(i)=N/A is number

density of the ith-particles. As is conventional, the area is dropped in the

following cases when it is constant.

The H-function, a step function, is shown in Fig. 3 for the processes

discussed above. We see that the emerging equilibrium state is one of

Fig. 3. H-function for particle rearrangement.

1130 Broadwell



minimum H with fluctuations that decline with lattice size. (Note the scale

change in the vertical axis.) Boltzmann proved that when there are no

spatial gradients the H-function falls monotonically to its minimum value.

This behavior is illustrated in Fig. 3(d) in which the initial field consists of

equal numbers of North and South particles, an arrangement in which

there is no mean velocity in either direction, and no gradients are

generated.

When the lattice is large enough for the continuum approximation to

be appropriate the model replicates the Boltzmann proof that H must

decline from non-equilibrium conditions. In this circumstance the equa-

tions for the discrete velocity gas (11) are applicable and are:

“n1
“t
+
“n1
“y
=h(n2n4−n1n3)

“n2
“t
+
“n2
“x
=h(n1n3−n2n4)

“n3
“t
−
“n3
“y
=h(n2n4−n1n3)

“n4
“t
−
“n4
“x
=h(n1n3−n2n4)

(1)

where h the collision frequency. When there are no spatial gradients it can

be shown from these equations that

dH
dt
=h(n1n3−n2n4)(ln n2n4−ln n1n3)

so that, as in Fig. 3(d),

dH
dt

[ 0

Noting that the collision term n1n3 is the inverse of n2n4 and vise versa, we
can see the similarities between these equations and the full Boltzmann and

H- function equations.

These examples of particle rearrangement are models of thought

experiments only: particle configurations cannot be prescribed. The next

two examples in contrast, where only macroscopic conditions initial condi-

tions are imposed, are idealizations of possible real experiments.
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3.b. Expansion into a Vacuum

Consider a configuration in which the particles are initially contained

in the left half of a ‘‘vessel’’ 40 units high and 80 units long. The gas is in

equilibrium with an initial number density distribution as shown in Fig. 4

at t=0. From this state the gas expands into the ‘‘vacuum’’ and comes to

rest through a series of compression and expansion waves, the early stages

of which are shown at t=20 and t=120. Equilibrium is reached at

approximately t=1500 when the mean density becomes uniform as is illus-

trated by the distribution at t=10, 000.

Fig. 4. Particle number density distribution, expansion into vacuum, 40×80 lattice.
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If at t=10, 000 all particle velocities are reversed, the gas returns to

the initial state in the reverse direction along the forward path, and the

initial density distribution is recovered. If, however, at the reversal just one

particle is not correctly reversed, the return to the initial state is destroyed

as the density distribution at the return time t(r) indicates. The two return

states, Fig. 4(e) and Fig. 4(f), result when errors are introduced at different,

randomly chosen, locations in two different runs. The computation illus-

trates the instability of paths towards non-equilibrium states, the signifi-

cance of which has been discussed by Lebowitz. (5) Nadiga et al (19) have also
demonstrated this instability with a nine-velocity lattice gas model.

Since both directions along the path are equally valid dynamical

motions, the instability backwards towards the initial non-equilibrium state

can serve just as well to show that any interaction with the environment,

always present in any real system, will destroy the return to the initial state

as the system moves forward in time.

In this example H=; n(i) ln n(i) A=;N(i) ln n(i) in which the

number of particles, N, is constant and at equilibrium N(i)=1/4N and

n(i)=1/4n. Thus since the particle density falls by one half, the change in

H is−N ln 2.

3.c. Shock and Expansion Waves

The model can treat another idealization of a possible real experiment,

one in which dissipation takes place within shock waves. Consider a lattice

for which the boundaries at x=0 and x=L are at first made periodic so

that East and West moving particles that leave at one boundary enter at

the other. The gas is given a mean velocity to the right by assigning more

E, (2), particles than W, (4), particles in the expression for mean x-direction

velocity, u=q[n(2)−n(4)]/n, where q is the particle velocity (taken to be

unity) and n the total particle number density.

After the gas (with the mean velocity) equilibrates, the boundaries at

x=0 and L are made reflective (as if walls were inserted) and the gas comes

to rest through a series of shock and expansion waves as indicated in Fig. 5.

After many passages of the waves through the system, the gas comes to rest

with the equilibrium particle density distribution shown at t=5000.
Since H for the initial non-uniform particle distribution is larger than

that for an equal distribution, the change in H in the process is negative as

in the previous cases. Adding significance and relevance to these results is

another parallel with monatomic gases described by the Boltzmann equa-

tion: the shock waves in Fig. 5 are described by model hydrodynamic

equations derived from the model Boltzmann equations, Eq. 1. (13, 20, 21)
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Fig. 5. Particle number density distribution, expansion and shock waves, 100×200 lattice.

4. DISCUSSION AND CONCLUSIONS

To discuss the above described results it is necessary to recall that in

the present context ‘‘reversible’’ has two different meanings. In molecular

dynamics it means that the reversal of time in the equations of motion has

no effect; in thermodynamics a process is said to be reversible if at its

conclusion the system and its surroundings can be returned to their initial

macrostates by (idealized) macroscopic operations.

An illustration of this confusing usage is Feynman’s remark about

molecular mixing, ref. 2, p. 46–7. ‘‘So the mixing is completely reversible,

and yet it is irreversible.’’ Likewise, the expansion into a vacuum and the

expansion and shock wave flow are reversible in the first sense but irrevers-

ible in the second. (The systems cannot be returned from the equilibrium

state to the initial conditions by macroscopic operations such as compres-

sion with a piston and energy transfer by heat conduction.) The time for

the ‘‘automatic’’ return is, of course, too long to be relevant for real

systems.

With the two meanings of reversible in mind, the results can be sum-

marized by stating that the reversible, deterministic lattice gas system has

been shown to develop, within a closed cycle, a long-term equilibrium state

towards which it evolves from non-equilibrium conditions. Despite the

microscopic reversibility and the cyclic nature of the system, the lattice

motions exhibit two of the canonical, thermodynamically irreversible, pro-

cesses that take place in real gases.

In view of the similarities between the model Boltzmann and H-

function equations and the full Boltzmann counterparts it not surprising

that the model results provide general support to Boltzmann’s views about
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the behavior of gas systems. The fluctuations of H in the equilibrium state

and its long persistence are in accord with his description, expressed in

probabilistic terms, of the behavior of that function. (8) In fact all the results

of this paper are consistent with Boltzmann’s own summary statement: (9)

‘‘We proved that it [the H-function] continually decreases as a result of

the motion of the gas molecules among each other. The one-sidedness of

this process is clearly not based on the equations of motion of the mole-

cules. For these do not change when the time changes its sign. This one-

sidedness rather lies uniquely and solely in the initial conditions.’’

The behavior in the thermodynamic limit, the Boltzmann–Grad limit,

of two related models should be mentioned. Caprino et al (22) analyze a

system of particles moving stochastically on a two-dimensional lattice, and

Uchiyama (23) studies a system of diamonds moving freely in two-dimen-

sional space. The diamonds are so oriented that collisions deflect collision

partners through ninety degrees. In the first reference the one-particle

distribution function is proved to converge, in the limit, to a solution of

Eq. 1, while in the second the solution does not come out. The present

model has not been so analyzed.
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